def plot_feature_importance(model, X_train, figsize=(12, 6)):
sns.set_style('darkgrid')
# Plot feature importance
feature_importance = model.feature_importances_
feature_importance = 100.0 * (feature_importance / feature_importance.max())
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
plt.figure(figsize=figsize)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, X_train.columns[sorted_idx])
plt.xlabel('Relative Importance')
plt.title('Variable Importance')
plt.show()
'개발 > ML+ Data Science' 카테고리의 다른 글
KDD 방법론이란? (0) | 2020.01.05 |
---|---|
CNN 층별 파라미터 구하기 (0) | 2019.11.30 |
Pandas DataFrame에 dict적용하기 (0) | 2019.11.10 |
KFold에서 1개의 set의 score만 낮게 나온다면? (0) | 2019.11.08 |
KFold Example (0) | 2019.11.06 |